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a b s t r a c t

Exposure to fine particulate matter (PM2.5) is one of the leading risk factors for the mortality and
morbidity burden in India. Health benefit expected from mitigation of emissions from individual sectors
is the key policy information to address this issue. Here we quantify the relative shares of four major
year-round anthropogenic sources to ambient PM2.5 in India using a chemical transport model and es-
timate premature deaths that could have been avoided due to complete mitigation of emissions from
these sources at state level. Population-weighted all-India averaged (±1s) annual ambient PM2.5 expo-
sures due to residential, transport, industrial and energy sectors in 2010 are estimated to be 26.2 ± 12.5,
3.8 ± 4.3, 5.5 ± 2.7 and 2.2± 2.3 mgm�3, respectively. Complete mitigation of emissions from the trans-
port, industrial and energy sectors combined would avoid 92,380 (95% uncertainty interval (UI), 40,918
e140,741) premature deaths annually, primarily at the urban hotspots. For the residential sector, this
would result in avoiding 378,295 (95% UI, 175,002e575,293) premature deaths due to a reduction in
ambient PM2.5 exposure in addition to the benefit of avoiding all premature deaths from household
exposure. Bihar and Goa are expected to have the largest (289) and smallest (48) premature mortality
burden per 100,000 population due to anthropogenic PM2.5 exposure. From policy perspective, con-
trolling residential sources should be prioritized in view of the effectiveness of implementing mitigation
measures and the expected larger health benefit at a regional scale. However, additional mitigation
measures are advised at the urban hotspots to curb emissions from the other sectors to get maximum
possible health benefit.

© 2018 Elsevier Ltd. All rights reserved.
1. Introduction

Long-term as well as short-term exposure to PM2.5 (particulate
matter smaller than 2.5 mm aerodynamic diameter) results in
various health impacts including premature death (Pope et al.,
2002; Schwartz et al., 2002; West et al., 2016). In India, close to a
billion people is exposed to annual ambient PM2.5 concentration
above the World Health Organization (WHO) air quality guideline
(Dey et al., 2012). Recent Global Burden of Disease (GBD) studies
(Murray et al., 2015; Cohen et al., 2017) and Disease Burden of India
study (Dandona et al., 2017) initiatives have clearly highlighted the
increasing risk of air pollution on morbidity and mortality burden
e by Payam Dadvand.
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in India. High background concentration throughout the year (i.e.
annual exposure), especially in the Indo-Gangetic Basin (IGB) and
urban pockets elsewhere (Dey and Di Girolamo, 2011), and episodes
during the post-monsoon to winter seasons elevating short-term
PM2.5 exposure above 500e600 mgm�3 for several days to weeks
in the recent years (Sharma and Dixit, 2016) called for a compre-
hensive air quality management plan in India.

Emergency mitigation measures such as vehicle rationing
where odd and even numbered vehicles were allowed to ply on the
corresponding days failed due to implementation strategy (too
many exemptions were given) and unfavorable meteorological
condition (Chowdhury et al., 2017). Formulation of a successful air
quality management plan to address the air quality problem in
India requires the information of the relative contributions of
various anthropogenic sources to ambient PM2.5 at a regional scale.
Source apportionment studies in India (e.g. Banerjee et al., 2015;
Behera and Sharma, 2015; Gummeneni et al., 2011; NEERI, 2008;
Pavuluri et al., 2011; Sharma et al., 2016) are mostly limited to
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few cities. Moreover, the short-term measures tailor-made for the
cities are often being perceived as hindrance to the economic
growth and social life, rendering the implementation strategy
inefficient. Therefore, a regional scale source-apportionment study
is required to assess the efficacy of the mitigation strategies from
the perspective of expected health benefit of the exposed
population.

Chafe et al. (2014) was one of the first studies to estimate
contribution of emission from household activities towards
ambient PM2.5 exposure. Lelieveld et al. (2015) carried out a global
analysis and showed large (>50%) contribution of household
sources to ambient PM2.5 in India. Several studies thereafter (eg.
Butt et al., 2016; Conibear et al., 2018; Silva et al., 2016; GBD-MAPS,
2018) followed suit with similar conclusion but their estimates of
the relative share of household sources to ambient PM2.5 vary in the
range 22e52%. Some of these studies also estimated the health
benefits due to complete mitigation of emissions from various
sectors. While these recent studies fulfilled the requirement of a
regional scale source-apportionment study in India, they provided
estimates at national level. Disease burden India study (Dandona
et al., 2017) has demonstrated a large heterogeneity in health
profiles across the Indian states. Therefore, there is a compelling
need to estimate the expected health benefit from mitigation of
major anthropogenic sources at state level for policy perspective.

In this study, we use version 3.6 of Weather Research Fore-
casting (WRF) model coupled with chemistry (hereafter WRF-
Chem) to examine the contributions of four major unceasing
anthropogenic sources - ‘residential’, ‘transportation’, ‘industrial’
and ‘energy’ sectors to ambient PM2.5 exposure in India. We further
determine the expected health benefits from the reduction of
ambient PM2.5 exposure due to complete mitigation of emission
from each of these sectors and identify the states that are expected
to get the most benefit. We provide statistics at state level, which
are likely to be very useful in guiding policymaking towards
achievement of a green and sustainable environment in India.

2. Methods

2.1. WRF-chem model set up, simulation and validation

WRF-Chem is an online coupled chemical transport model
which simultaneously simulates meteorology and chemistry (Fast
et al., 2006; Grell et al., 2005). This model is set-up over India for
the domain - latitude 5.8e36.5 N and longitude 67.8 to 100.6 E at a
horizontal resolution of 10 km. The model setup has 345W-E and
345 S-N points, and 30 vertical levels with the pressure at top set at
50 hPa. Lin cloud microphysics scheme (Lin et al., 1983), RRTM long
wave radiation scheme (Mlawer et al., 1997), Dudhia shortwave
radiation scheme (Dudhia, 1989), YSU Planetary boundary layer
scheme (Hong et al., 2006), Grell Freitas scheme for cumulus
parameterization (Grell and Freitas, 2014) have been used in these
simulations. RADM2method for gas phase chemistry has been used
alongwith GOCARTaerosol treatment (Chin et al., 2002). NCEP final
analysis (NCEP-FNL) data at 1� � 1� resolution operationally
generated for every 6 hour at NCAR has been used as meteorolog-
ical input to generate the initial and boundary conditions. The
topography and land use data for the domain have been taken from
United States Geological Survey and MODIS (MODerate resolution
Imaging Spectroradiometer).

Chemical initial and boundary conditions have been generated
with version 2 of EDGAR (Emission database for global atmospheric
research)-HTAP emission inventory developed at IIASA (Interna-
tional Institute for Applied Systems Analysis) at 0.1� � 0.1� of spatial
resolution for each month. Emission inventory is a key parameter
for precise air quality modeling. Emission inventories for the
developed countries are more robust because of better character-
ization of emission sources and a dense air quality monitoring
network compared to the developing countries like India. EDGAR-
HTAP inventory has been developed for 5 major sectors viz. resi-
dential, transportation, industry, energy and agriculture; where
agriculture sector includes only NH3 emissions (Janssens-
Maenhout et al., 2012). Residential sector includes emission from
household activities such as heating, cooling, lighting and cooking
and emission from solid waste treatment through landfill and
incineration, and waste water treatment. Transportation sector
includes ground transport by road, railway, inland waterway,
pipeline and other ground transport of mobile machinery. We note
that re-suspended dust from pavement or tire and breakwear is not
included in the inventory. Industrial sector includes emissions from
industrial non-power but large-scale combustion emissions and
emissions from industrial processes and products. Energy sector
considers power generation units by coal-fed thermal plants
(Janssens-Maenhout et al., 2015). With the objective to choose an
emission inventory that follows national level policy for each part
of the world, MIX emission inventory has been used in EDGAR-
HTAP for Asia. MIX inventory is a mosaic Asian anthropogenic
emission inventory developed under Model Inter-comparison
study for Asia Phase III (MICS Asia III). SO2, BC and OC emission
data in MIX were generated by ANL (Argonne National Laboratory)
and other species CH4, CO, NOx, NMVOC, NH3, PM10 and PM2.5 were
taken from REAS2.1 for India (Janssens-Maenhout et al., 2015; Li
et al., 2017). ANL has developed emission inventory using tech-
nology based methodology and similar consistent method has been
used in development of REAS. These emission inventories were
prepared from data collected at state level in India (Kurokawa et al.,
2013; Ohara et al., 2007). Emission factors were taken from Indian
studies. For example, SO2 emission factor for biofuel combustion
was taken from Habib et al. (2004) while emission factor for fossil
fuel emissionwas taken from Reddy and Venkataraman (2002) and
Chakraborty et al. (2008). NOx and CO emission from power plant
was taken from Kurokawa et al. (2013). In final EDGAR-HTAP
emission, EDGARv4.3 data has been used for gap filling for some
regions and sectors (Li et al., 2017).

We have performed simulations for the year 2010 over India
using EDGAR-HTAP emission inventory for the anthropogenic
sources and GOCART module for the dust sources. Anthropogenic
PM2.5 has been estimated by subtracting natural PM2.5 from the
total simulated PM2.5 concentration. Subtraction method (as
demonstrated in Chambliss et al., 2014; Conibear et al., 2018; Silva
et al., 2016) has been adopted to quantify the relative contributions
of the four (residential, transport, industry and energy) major
anthropogenic sources that emit PM2.5 continuously throughout
the year. All together, five sets of simulations have been carried out.
The first one considers the total emission from these four sectors
along with natural dust and the subsequent four simulations
consider emission excluding one of these sectors. The difference in
annual anthropogenic PM2.5 from the first and subsequent simu-
lations can be attributed to the contribution of that particular
source that has not been considered in that simulation. These
simulations are performed for the entire year 2010 over this
domain and with mentioned meteorological and emission data.

WRF-Chem simulated PM2.5 has been found to show statistically
significant correlation (R¼ 0.81) with coincident in-situ data in
India (Bran and Srivastava, 2017). We also compare our simulation
with in-situ PM2.5 from Delhi and found a moderate correlation
with under prediction (R¼ 0.56). We observe that the negative side
of bias (predicted e observed) shows a consistent linear relation
with in-situ data that is significant at 95% CI (Fig. 1a). Part of this
under prediction may be attributed to the fact that the model does
not simulate natural PM2.5 well enough, while the in-situ PM2.5
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data contains both natural and anthropogenic fractions. Moreover,
PM2.5 measurement was not as widespread in 2010 as it is now
(www.cpcb.nic.in), and so we do not have in-situ dataset from any
other site for the year of simulation to validate our model and
measurements are not available for rural areas.

To address this challenge, we resort to satellite-based PM2.5
product generated by van Donkelaar et al. (2016). The satellite-
derived PM2.5 is obtained from observed aerosol optical depth
(AOD) data of multiple satellite products (MISR, MODIS Dark Target,
MODIS and SeaWiFS deep blue and MODIS MAIAC) and GEOS-
Chem derived conversion factor (the ratio of PM2.5 and AOD). The
uncertainty in AOD is calibrated with ground-based sun photom-
eter (AERONET) observations for 1998e2010 and the satellite-
derived PM2.5 is adjusted towards in-situ observations using
geographically-adjusted regression model with ~9% uncertainty in
the south Asian region. More details about the satellite-derived
PM2.5 product are available in the literature (van Donkelaar et al.,
2014, 2010; van Donkelaar et al., 2016; Li et al., 2018). The com-
parison between model simulated and satellite derived anthropo-
genic PM2.5 (Fig. 1b) shows a strong correlation (Pearson's
correlation coefficient¼ 0.89, significant at 99% CI for N¼ 56,873
grid points) with the bias showing a distinct spatial pattern (Fig.1c).
Fig. 1. (a) Scatter plot between simulated total PM2.5 and in-situ PM2.5 showing linear bias, (
spatial bias (in mg m�3) in simulated anthropogenic PM2.5 (represented as satellite derived m
and yellow to brown tinge demonstrates over prediction by the model in annual PM2.5 con
The mean bias (difference of satellite derived and model simulated
anthropogenic PM2.5) is 1.4 mgm�3 with a standard deviation of
9.0 mgm�3. In the eastern and peninsular India, the model over-
estimates the concentration by 4e15 mgm�3, while it un-
derestimates by similar margin in the western and central IGB. The
bias is within ±5 mgm�3 in the rest of the country. The bias may be
attributed to the missing anthropogenic sources that are seasonal
in nature (e.g. crop and solid-waste burning) and the uncertainty in
the model physics. Given the task at hand to examine the source
attribution of annual exposure for the entire country at high spatial
resolution, the model performance is considered to be quite
reasonable.
2.2. Estimate of premature mortality burden

For this study we consider chronic obstructive pulmonary dis-
ease (COPD), ischemic heart disease (IHD), stroke and lung cancer
(LC) which is known to have causal relation with exposure to PM2.5
(Dandona et al., 2017). Premature mortality burden (DM) from
these diseases are estimated using traditional epidemiological
relation (Anenberg et al., 2010; Chowdhury and Dey, 2016) for a
district i and disease j;
b) scatter plot between simulated and satellite-derived anthropogenic PM2.5 and (c) the
inus WRF-Chem simulated PM2.5). Green to bluish tinge demonstrates under prediction
centration.

http://www.cpcb.nic.in
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Pi is the adult population above the age of 25 for each district i
obtained at every 5 year interval from the Census of India (2011).
RRi,j is relative risk for a disease j at district i and is estimated using
integrated exposure-response (IER) function used in the latest
Global Burden of Disease GBD study (Cohen et al., 2017) and annual
PM2.5 exposure of district i. IER is developed in the GBD study by
Burnett et al. (2014) and this is available for all four respiratory
diseases and discussed age group. DYi,j represents baseline mor-
tality for the disease j at district i, DYi,j of COPD, IHD and Stroke is
adjusted to vary for each state as a function of Gross Domestic
Product (GDP), it is discussed in details in our earlier work
(Chowdhury and Dey, 2016). Baseline mortality for LC is considered
uniform across India at 6.5 per 100,000 population (WHO, 2011).
We estimate premature deaths (a) due to annual PM2.5 exposure
from total emissions of all four anthropogenic sources and (b)
separately for annual PM2.5 exposure without emission from one of
the four sectors. The difference between (a) and (b) is attributed to
the premature deaths that could be averted by completely miti-
gating emission from that particular sector and this will be
maximum health benefit attributed to a particular source. Statistics
are presented at the state level with uncertainty estimates (5%e95%
UI, shown in parentheses after the reported central values). The
uncertainty is evaluated based on uncertainty in the IER function in
estimating RR (Burnett et al., 2014) and the uncertainty in esti-
mating baseline mortality as a function of GDP (Chowdhury and
Dey, 2016). The other source of uncertainty in our results stems
from the uncertainty in the emission inventory and various
parameterization schemes used in the model. We note that mea-
sures have been taken to reduce uncertainty in EDGAR-HTAP
emission inventory as much as possible by incorporating regional
datasets using state-of-the-art methodology (Janssens-Maenhout
et al., 2012; Li et al., 2017). In future, inter-comparison of multiple
inventories across ensemble modeling framework would help in
reducing the uncertainty further.
3. Results

First, we present the spatial heterogeneity in anthropogenic
PM2.5 in India and the relative shares of the four major incessant
emission sources. Then we show the maximum possible health
benefit expected if emission from each of these sources could be
curbed completely. We interpret our results in view of the studies
published in recent times and provide a comparative discussion.
Fig. 2. Spatial distribution of WRF-Chem simulated annual ambient anthropogenic
PM2.5 exposure (mg m�3) over India for the year 2010.
3.1. Spatial distribution of anthropogenic PM2.5 and its source
attribution

Model-simulated spatial distribution of annual ambient
anthropogenic PM2.5 over India is shown in Fig. 2. Anthropogenic
PM2.5 exposure is> 50 mg m�3 in the entire IGB with values
exceeding 80 mg m�3 (double the Indian annual ambient air quality
standard) in the eastern IGB, Delhi national capital region (NCR)
and several industrial hotspots across the country. Emissions from
various anthropogenic sources in the densely populated IGB are
trapped by favorable meteorology and low-lying topography
bounded by mountains in the north and south (Dey et al., 2012)
inhibiting its dispersion. The exposure decreases spatially from
north to south. Anthropogenic PM2.5 exposure is below 25 mg m�3

in the mountainous regions in the north, northeast, parts of
Western and Eastern Ghats along the west and east coast and the
arid regions in the west.
Analysis of contributions of these four major sources (Fig. 3)

reveals that residential sector contributes >70% to annual anthro-
pogenic PM2.5 concentration in India except in Delhi NCR and the
industrial hotspots, where the contribution is <50%. In the Hima-
layan foothills and parts of eastern and northeastern India, the
relative contribution of residential sector even exceeds 80%.
Contribution of industrial sector mostly ranges in 8e24% over most
parts of India. The relative share exceeds 24% in Gujarat and
Mumbai industrial corridor and several industrial clusters in
various states. Relative share of transportation sector exceeding
16% is noticeable in Delhi NCR, Kerala, west Gujarat, Himachal
Pradesh and Jammu & Kashmir. In the rest of the country, this
sector contributes mostly in the range 8e16% with even lesser
contribution in the eastern and northeastern India. Energy sector
contributes <8% in most of the country, but a higher (>16%)
contribution is concentrated in the regions having coal-based
thermal power plants.

Frequency distribution of the relative shares of these sectors in
terms of spatial coverage further demonstrates that residential
sources contribute in the range 45e65% in ~15% grids, 65e75% in
~45% grids and >75% in another ~20% grids across India. Only in the
remaining 20% grids in India, relative share of residential sector to
anthropogenic ambient PM2.5 exposure is smaller than the com-
bined shares of the other three sectors. Industrial sector contributes
<15% in ~20% grids, in the range 15e25% in 65% grids and >25% in
only ~10% grids. Similarly, energy sector contributes <15% in ~70%
grids, in the range 15e25% in another ~15% grids and >25% in only
2e3% grids. For the transportation sector, relative shares of <15%,
15e25%, 25e35% and >35% are observed in ~60%, ~30%, ~5% and
<1% grids, respectively. To summarize, the transportation, energy
and industrial sectors seem to be the dominant sources at local
urban scale, while the relative share of residential sources exceeds
the combined share of the other three sources (and hence is
important) at regional scale.



Fig. 3. Percentage shares of (a) residential, (b) industrial, (c) transportation and (d)
energy sectors to annual ambient anthropogenic PM2.5 exposure in India.

Fig. 4. Percentage shares of energy, transportation, industry, and residential sectors in
total anthropogenic PM2.5 emission for each Indian state. Emission data is from
EDGAR-HTAP emission inventory.

Fig. 5. Scatter plot between share of residential sources to ambient anthropogenic
PM2.5 exposure and the percentage of population using solid fuel for residential use in
each state/UT (represented by each dot).
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The relative shares (in percentage) of these fourmajor sources to
annual anthropogenic PM2.5 emission in each state are shown in
Fig. 4. Share of residential sector is more than 50% in most of the
states. Assam has the highest percentage contribution (80%) from
residential sector followed by Uttaranchal (74%). Himachal Pradesh,
Bihar Meghalaya, Tripura, Nagaland, Jammu & Kashmir have
around 70% contribution from residential sector. Delhi has the least
percentage contribution (9%) from residential sector, whereas
transportation sector is themajor contributor (65%). Union territory
(UT) Dadra & Nagar Haveli (30.5%) and Gujarat (27.2%) have the
highest percentage contribution from industrial sector among the
states. Major mining state Chhattisgarh has 32% contribution from
energy sector, which is highest among the states followed by
Pondicherry (28.7%) and Jharkhand (26%). The states with the
highest share from residential sector in total PM2.5 emission like
Assam, Bihar, some other North-eastern states Meghalaya, Tripura
has high simulated PM2.5 concentration from residential sector.

The share of solid fuel use for domestic activities influences the
variability of share of household sources in annual anthropogenic
PM2.5 exposure across the states and UTs. The scatter plot (Fig. 5)
reveals that nearly 62.5% variability in the data can be explained by
the percentage of population using domestic solid fuel use alone.
The remaining variability can be attributed to meteorology that
modulates PM2.5 transport in and out of a region. This clearly
suggests that despite of the meteorological influence, share of the
residential sources toward ambient anthropogenic PM2.5 can be
minimized by simply making clean fuel available to larger popu-
lation in India. Such policy would have much larger societal impact
since residential sources are observed to be dominant in almost all
the states. Distribution pattern of residential emission is different
from other sources, as the other sectors are localized to small region
compare to widely distribution of residential emission. Thus,
spatial distribution analysis shows hotspot peaks in some cities and
industrial regions, whereas residential emission has widely
distributed smaller peaks.
We estimate population-weighted annual anthropogenic PM2.5
exposure with respect to anthropogenic PM2.5 emission per unit
area (i.e. source intensity) for each state and normalize the ratio for
a comparative assessment. A higher value (Fig. 6) implies that
anthropogenic PM2.5 exposure in that state is large with respect to
local source intensity, which can be interpreted as the pollution is
dominated by emissions from outside the state boundary. On the
contrary, lower value (i.e. low source intensity) implies that the
annual anthropogenic PM2.5 exposure per unit emission from
within the state boundary is relatively small in general. However
for Delhi, extremely large source intensity compared to other states
results in the smallest normalized ratio. Another plausible expla-
nation for this small number is that pollution gets transported out
of Delhi towards the downwind regions in some seasons. Kerala
also falls in this category where the pollution is mostly flushed out



Fig. 6. Normalized ratio of population-weighted anthropogenic PM2.5 exposure and
PM2.5 emission per square kilometer for each state.

Fig. 7. Expected health benefit in terms of premature deaths (per 100,000 population)
that could be avoided by complete mitigation of emission from (a) residential, (b)
industrial, (c) transportation and (d) energy sectors.
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to the ocean (Dey and Di Girolamo, 2011). Himalayan states like
Jammu & Kashmir, Arunachal Pradesh, Sikkim and Uttaranchal
show the highest ratio, implying that the annual anthropogenic
PM2.5 exposure in these states are quite high compared to emission
intensity within the state. The inland states show moderate ratio.
The analysis reveals that controlling sources within the states
showing low to moderate ratio would be highly beneficial for these
states as well as the states downwind.
3.2. Expected health benefit due to complete mitigation of emission
from individual sources

We estimate premature mortality burden following the Global
Burden of Disease approach (Cohen et al., 2017) for the annual
anthropogenic PM2.5 exposure attributed to each of these sources
using population data from the Indian Census 2011. The difference
in burden due to anthropogenic PM2.5 exposure and exposure
without a particular source is interpreted as the maximum possible
health benefits expected in terms of premature deaths that could
have been avoided by completely mitigating emission from that
particular source across India. We present these health benefits
normalized per 100,000 population (Fig. 7) for each state and UT in
India in Table 1. By abating emissions from residential, industrial,
transportation and energy sectors completely, 378,295
(175,002e575,293), 45,999 (20,682e70,021), 28,180
(12,459e42,934), and 18,201 (7777e27,786) premature deaths
respectively could be avoided in India annually. State-wise esti-
mates of premature mortality burden attributed to total anthro-
pogenic PM2.5 exposure normalized to 100,000 population is
shown in Table 1 (right column). The states of Bihar and Uttar
Pradesh depict very high premature morality rate (289 (77e557)
and 216 (59e411), respectively) compared to the central and south
Indian states.

In the regions dominated by rural population (primarily in
Uttaranchal, Uttar Pradesh, Bihar, Jharkhand, West Bengal, Madhya
Pradesh, Chhattisgarh, Orissa and the northeastern states), com-
pletemitigation of emission from residential sources would save 60
to 140 (per 100,000 population) premature deaths just from
reduction in ambient anthropogenic PM2.5 exposure. We note that
mitigation of emission from residential sources would further lead
to large health benefit due to reduction in household exposure that
is even larger than ambient PM2.5 exposure in India (Balakrishnan
et al., 2013). Even in the other parts of the country, the expected
per capita health benefit from complete mitigation of residential
sources is comparable to the benefit expected from mitigation of
the other three sources. The health benefit by mitigating emission
from the industrial sector completely is also large (8e16 premature
deaths per 100,000 population) in the IGB, Mumbai and Gujarat
industrial corridors. The largest benefit of mitigating emission from
the transportation sector is expected in the Delhi NCR and western
to central Uttar Pradesh. On the other hand, mitigating emission
from the energy sector completely would avoid 8e25 premature
deaths per 100,000 population each year in Delhi NCR and the
central and eastern IGB. In the rest of the country, the health benefit
of controlling these sectors is minimal and only effective in urban
hotspots. The health benefit in the states of Delhi, Gujarat, Haryana
and Punjab does not resemble with PM2.5 emission distribution. For
example, transportation sector is one of the biggest contributors to
ambient PM2.5 in Delhi but the expected health benefit of complete
mitigation of emission from this sector is smaller than that from the
residential sector. The probable reason behind this is regional
transport of residential PM2.5 from other states to Delhi.



Table 1
Premature deaths (95% UI are shownwithin parentheses) per 100,000 population in each state/union territory that could have been avoided by completely mitigating emission
from the corresponding sector across the country. The last column represents premature mortality burden per 100,000 population attributed to total anthropogenic PM2.5

exposure in each state.

State/Union Territory Health benefits from complete mitigation of emission sources Premature Mortality (per 100,000 population)

Residential Transportation Industrial Energy

1 Andhra Pradesh & Telangana 47 (24e73) 4 (2e6) 8 (4e12) 3 (2e5) 103 (28e196)
2 Arunachal Pradesh 64 (13e123) 3 (1e4) 4 (2e7) 1 (1e2) 67 (8e140)
3 Assam 119 (55e178) 3 (1e4) 6 (2e9) 1 (0e2) 172 (46e327)
4 Bihar 148 (61e225) 6 (2e10) 9 (3e13) 5 (1e8) 289 (77e557)
5 Chandigarh 30 (16e45) 3 (1e4) 4 (2e6) 1 (0e2) 72 (22e127)
6 Chhattisgarh 59 (28e88) 4 (2e6) 10 (5e14) 7 (3e11) 143 (38e271)
7 Dadra & Nagar Haveli 47 (23e70) 4 (2e6) 9 (5e14) 2 (1e3) 108 (26e209)
8 Daman & Diu 43 (21e64) 4 (2e6) 11 (6e17) 3 (1e4) 110 (27e212)
9 Delhi 15 (6e24) 8 (3e13) 4 (1e6) 4 (1e6) 81 (27e140)
10 Goa 21 (11e32) 3 (2e4) 5 (3e7) 1 (0e2) 48 (12e87)
11 Gujarat 34 (18e52) 4 (2e6) 8 (5e13) 2 (1e4) 81 (21e154)
12 Haryana 30 (16e45) 6 (3e10) 5 (3e8) 2 (1e3) 92 (29e164)
13 Himachal Pradesh 50 (20e82) 4 (2e6) 5 (3e8) 1 (0e2) 75 (16e148)
14 Jammu & Kashmir 76 (20e139) 5 (2e7) 6 (3e10) 1 (0e2) 98 (17e199)
15 Jharkhand 82 (37e121) 4 (2e7) 10 (4e14) 6 (2e9) 178 (49e328)
16 Karnataka 46 (23e69) 4 (2e6) 8 (4e12) 3 (1e4) 92 (22e175)
17 Kerala 40 (21e61) 6 (3e10) 6 (3e9) 2 (3e9) 85 (21e162)
18 Lakshadweep 60 (29e87) 5 (3e8) 11 (5e16) 3 (1e4) 79 (12e164)
19 Madhya Pradesh 80 (37e122) 6 (3e9) 11 (5e16) 4 (2e6) 161 (41e315)
20 Maharashtra 34 (18e52) 3 (2e4) 8 (4e12) 3 (1e4) 85 (21e162)
21 Manipur 101 (43e159) 2 (1e4) 7 (4e11) 1 (4e11) 138 (28e289)
22 Meghalaya 81 (40e119) 2 (1e3) 6 (3e9) 1 (0e2) 114 (28e221)
23 Mizoram 75 (28e123) 3 (2e5) 7 (3e10) 1 (0e2) 85 (13e176)
24 Nagaland 77 (36e116) 2 (1e4) 6 (3e9) 1 (0e2) 99 (22e193)
25 Orissa 77 (37e117) 3 (1e4) 8 (4e13) 4 (2e6) 158 (44e297)
26 Pondicherry 32 (17e49) 4 (2e6) 5 (3e8) 2 (1e4) 71 (19e131)
27 Punjab 40 (20e61) 6 (2e9) 7 (3e11) 1 (0e2) 113 (35e204)
28 Rajasthan 59 (29e89) 6 (3e10) 9 (4e13) 2 (1e3) 124 (31e239)
29 Sikkim 53 (26e131) 2 (1e3) 2 (2e5) 0 (0e1) 56 (16e164)
30 Tamil Nadu 38 (20e58) 5 (2e7) 6 (3e9) 3 (1e4) 82 (21e154)
31 Tripura 78 (38e117) 3 (2e5) 7 (4e11) 1 (0e2) 125 (32e239)
32 Uttar Pradesh 100 (44e150) 8 (3e13) 11 (4e17) 5 (2e7) 216 (59e411)
33 Uttaranchal 51 (22e83) 3 (2e5) 4 (2e6) 1 (0e2) 79 (18e150)
34 West Bengal 75 (35e114) 3 (1e5) 7 (2e10) 3 (1e5) 155 (46e283)
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4. Discussion and conclusions

Air pollution has become a serious health concern in India.
Framing an efficient clean air policy relies on the scientific
knowledge of source attribution of ambient anthropogenic PM2.5
exposure at a regional scale and the expected health benefit from
controlling various anthropogenic sources. Since PM2.5 distribution
depends on meteorology, implementation of mitigation measures
at local scale may not be successful (Chowdhury et al., 2017). Here
we quantify the relative shares of residential, industrial, trans-
portation and energy sectors (four major anthropogenic sources
that emit PM2.5 continuously throughout the year) to annual
anthropogenic ambient PM2.5 exposure in India using a chemical
transport model. Emissions from the seasonal sources such as crop-
waste and solid-waste burning, re-suspended dust and brick kilns
are not considered in this study. Incorporation of these season-
specific emissions would further reduce the relative shares pre-
sented here. Therefore, the relative shares of each sector may
appear to be higher in comparison to some of the recent studies and
should not be interpreted in absolute terms. We note that the
objective here is to quantify the maximum expected health benefit
at state level due to complete mitigation of emission from these
sources.

Our analysis is consistent with the general consensus that res-
idential sources are the largest contributor to the ambient
anthropogenic PM2.5 exposure in most parts of India (Conibear
et al., 2018; GBD-MAPS, 2018; Lelieveld et al., 2015). However, we
feel that a comparative discussion (Table 2) would help interpreting
the results in viewof the various estimates across the literature. The
difference in estimated source attributed relative shares across
these studies can be attributed to differences in model configura-
tion, model physics and emission inventory. However, considering
the health benefit estimates along with 95% uncertainty range, our
results are comparable to most of the studies (GBD-MAPS, 2018;
Conibear et al., 2018; Lelieveld et al., 2015). Our estimates of health
benefit are larger than that in Silva et al. (2016) perhaps because
they used an older emission inventory. Our transportation sector
attributed burden is comparable to GBD-MAPS (2018), but smaller
than the estimate by Conibear et al. (2018). We speculate that this
difference could be due to use of a different aerosol and trace gas
chemistry scheme in the simulation. Only simulations of source-
attributed ambient PM2.5 exposure by a single CTM using
different emission inventories and by multiple CTMs using same
inventory in future would resolve the issue of sensitivity of the
estimated health burden to these critical factors.

The health benefit analysis presented here assumes complete
mitigation of emissions from these sectors (residential, energy,
transport and industry), which we acknowledge is realistically
difficult to achieve. Though complete mitigation of residential
emissions seems theoretically viable but on-field issues including
compliance towards clean fuel usage and stacking of fuels (Smith
and Pillarisetti, 2017) makes this a challenging problem to tackle.
We understand that mitigating a fraction of emission from other
sources like industry, transportation and energy sectors requires



Table 2
A comparative summary of source attributed health burden estimates for the four major continuous anthropogenic sources in India.

Methodology and Input data (Work Reference) Health burden from different emitting sectors

Model ResolutionYear Emission Inventory Reference Residential Transport Industry Energy Total

WRF-Chem 10� 10 km
2010

EDGAR-HTAP emission This study 378,295 (175,002
e575,293)

28,180 (12459
e42934)

45,999 (20682
e70021)

18,201 (7777
e27786)

793,985

WRF-Chem 30� 30 km
2014

EDGAR-HTAP emission Conibear
et al., 2018

256,000 (162000
e340000)

66,000 (45000
e90000)

43,000 (29000
e58000)

90,000 (60000
e122000)

990,000

GEOS-Chem 11� 11 km
2015

IITB emissiona GBD-MAPS,
2018

267,700 (230000
e315000)

23,100 N/Ab N/A 1,090,400

EMAC general
circulation model

110� 110 km EDGAR Lelieveld
et al., 2015

325,604 41,541 42,336 89,130 64,4993

TM5-FASST 110� 110 km GAINS and MESSAGE emission Chafe et al.,
2015

200,000 (For South
Asia)

N/A N/A N/A N/A

MOZART-4 55� 73 km RCP8.5 Global emission & GEIA-
ACCENT emission

Silva et al.,
2016

173,000 19,900 36,400 39,200 392,000

a Details about IITB (IIT Bombay) emission inventory can be obtained from Pandey et al. (2014); Pandey and Venkataraman (2014) and Sadavarte and Venkataraman (2014).
b Not available.
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enormous effort towards constructing and enforcing policy guide-
lines throughout the country. Therefore, these estimates should be
interpreted as the maximum expected health benefit construing to
the fact that any measure to mitigate the emission from these
sectors would associate with certain health benefits with these
maximum health benefits as the upper bound.

We note that clean air policy should also focus on reducing
emission from the transportation, industrial and energy sectors,
especially at the urban centers. In response to the public health
emergency called by the Indian Medical Association in Delhi NCR,
BS-VI compliant fuel has been introduced already leapfrogging BS-
V from the existing BS-IV fuel without requiring any change in
vehicle technology. This is expected to reduce emission from
transport sector by a large margin (80% reduction in SO2 emission
and a large cut in PAH emissions). Recently, the honourable Su-
preme Court of India has imposed a ban on the usage of dirty fuels
like petroleum coke and furnace oil in industries situated in the
NCR which in-turn demands better taxation policies for cleaner
fuels to be used at large scale in industries. Though the coal-fed
power plants offer cheaper cost per unit than the gas-based po-
wer plants, the Government of India is focused on improving and
extending the capacities of the cleaner gas-based power plants in
the NCR. As evident, most of the policies undertaken by the gov-
ernment are focused on curbing air pollution in and around Delhi,
though it is obvious that the entire IGB is heavily polluted and re-
quires immediate action plan similar to Delhi NCR. A recent study
(Bergin et al., 2017) pointed out that the solar energy resource in
India is affected severely by the pollution. Therefore, unless the
pollution reduces, the solar energy resource is going to be depleted,
especially when ambient PM2.5 concentration is projected to in-
crease in the next several decades under the RCP4.5 and RCP8.5
scenarios (Chowdhury et al., 2018). Through this paper, we call for
major policy implementation to cut down emissions from these
major sectors at regional scale to achieve sustainable development.
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